10^2=3^2+x^2

Simple and best practice solution for 10^2=3^2+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10^2=3^2+x^2 equation:



10^2=3^2+x^2
We move all terms to the left:
10^2-(3^2+x^2)=0
We add all the numbers together, and all the variables
-(3^2+x^2)+100=0
We get rid of parentheses
-x^2+100-3^2=0
We add all the numbers together, and all the variables
-1x^2+91=0
a = -1; b = 0; c = +91;
Δ = b2-4ac
Δ = 02-4·(-1)·91
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{91}}{2*-1}=\frac{0-2\sqrt{91}}{-2} =-\frac{2\sqrt{91}}{-2} =-\frac{\sqrt{91}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{91}}{2*-1}=\frac{0+2\sqrt{91}}{-2} =\frac{2\sqrt{91}}{-2} =\frac{\sqrt{91}}{-1} $

See similar equations:

| 13c+7=-20c+7 | | 100=9+x^2 | | -3q-2=-7q-9+3q | | -6-3t=-5t+10 | | -9+3w=2w | | i^2+2i-1=0 | | -2r+10=2-3r | | 8x+3=6x=17 | | 8.51.2=72d | | -10+3f-6f=-7+10 | | -5j=-8-j | | 10+4y+10=-7+7y | | 8c-4=5c+8 | | -5f+1=-6f+4 | | 45=1/2h(8+7) | | -8d+1=-10d+9 | | 3g=2g-4 | | -1-8q=-7q+9 | | -h=9+8h | | 8-4n=-3n | | -4-5(1-8d)=17 | | 3m+4=91 | | 2x+5=30-30x | | 2y^2-18y+64=0 | | y^2-9y+32=0 | | 3(2b+1)=18b | | -3/8x=28.41 | | 2x2=-10x-8 | | -3a+4+4a=9-30 | | 9x+6=21x+9 | | -6-b=2b+1 | | 1/3-2x=5 |

Equations solver categories